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Summary

We propose a new approach to Gauss-Newton optimization to solve the three-dimensional VTI-anisotropic
controlled-source electromagnetic inverse problem. The main two bottlenecks of the Gauss-Newton implemen-
tation are computation and storage of the large Jacobian matrix, and large memory and time required for the
solution to the system of normal equations. To overcome the �rst issue, the simulation and optimization meshes
are decoupled with the use of node-based basis functions. This signi�cantly reduces the number of optimization
parameters and hence the memory requirements. The second issue is solved by using a new preconditioner in
Conjugate-Gradient solver. Our preconditioner is based on a limited-memory quasi-Newton approximation to
the inverse of the Hessian matrix and reduces number of Conjugate-Gradient iterations. This preconditioner is
much more e�cient than the commonly used Jacobi preconditioner. To further reduce the computational time
the code is parallelized in a hybrid manner using MPI and openMP. The method is validated with an o�-shore
controlled-source electromagnetic dataset acquired at the slow spreading Mohns ridge located east of Greenland
and southwest of Svalbard.
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Introduction

The solution to a geophysical inverse problem is com-
monly sought through minimization of an objective
function. To �nd such a minimum in the large-scale
3D case, the gradient-based or Gauss-Newton (GN)
optimization methods are employed. While gradient-
based methods are less demanding in terms of com-
puter resources, Nguyen et al. (2016) showed that GN
method can lead to a much better inversion results.

The GN method relies on the computation of the Ja-
cobian matrix that contains information about the
derivatives of the simulated data with respect to con-
ductivity. Storage of the Jacobian matrix requires a
huge amount of memory, especially in the 3D case.
Moreover, due to the dense structure of the Jacobian
matrix, the matrix-vector multiplications needed for
solving the GN system of normal equations can be-
come very expensive.

Many researchers proposed strategies to make 3D GN
inversions feasible (see, for example, Li et al., 2011;
Grayver et al., 2013; Amaya et al., 2016; Mittet &
Avdeeva, 2023). Some straightforward solutions are
to use a subset of the measured data or coarse in-
version grids, but the choice of the subset or the
coarsening is subjective and relies on the geophysi-
cist's experience, and may lead to a loss of important

information. A more advanced approach by Amaya
et al. (2016) combines several source positions for
simultaneous-source simulations. The resulting Hes-
sian matrix can be described as a low-rank approxi-
mation to the GN Hessian.

To reduce the memory usage and the computation
time while preserving the quality of the inversion
results, Li et al. (2011) proposes a compressed im-
plicit Jacobian scheme. It is therefore not necessary
to store the large Jacobian matrix in memory, but
this scheme comes at the price of some computational
overhead. In this scheme the Jacobian matrix multi-
plication with a vector is converted to a matrix-vector
operation of the �eld matrices with this vector. To
further mitigate the computational overhead they ap-
ply the adaptive cross approximation method to com-
press one of the �eld matrices.

We propose an alternative solution to the problem.
To reduce memory required by the Jacobian we use
node-based basis functions to decouple simulation
and optimization meshes. This strategy is discussed
in detail in Mittet & Avdeeva (2023), where it is suc-
cessfuly veri�ed for a 2.5D case. In this abstract we
focus on bottlenecks of the numerical implementation
and give recepies on how to overcome these bottle-
necks. We present a solution that can be applied to
a large 3D data sets, with relatively modest compu-
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tational resources. In addition, to speed up the solu-
tion of the system of normal equations a new precon-
ditioner for Conjugate-Gradient (CG) solver is sug-
gested. We validate the inversion on both 2.5D and
3D marine controlled-source electromagnetic (CSEM)
datasets.

3D CSEM GN inversion methodology

The goal of a VTI-anisotropic CSEM inversion is to
�nd the distribution of the model parameters m, for
example the electrical conductivity σ = (σh,σv), in
the volume of interest V from observations of electric
and magnetic �elds excited by sources xs at receivers
xr. This is sought through minimization of an objec-
tive functional:

φ = φd + λφs → min
λ,m

, (1)

where φd and φs are the data mis�t and regulariza-
tion terms. The data mis�t is a weighted di�erence
betweed predicted and observed data

φd(m) =
1

2
∥f(m)− dobs∥2WT

d Wd
, (2)

and the regularization term is a standard stabilizing
functional based on the gradients of the model, that
steer the solution towards a smooth model. Matrix
Wd is a diagonal matrix with the data weights.

After second-order Taylor expansion of equation 1,
we obtain the GN system of normal equations[

ℜ
{
JH
mWT

d WdJm

}
+ λ∇2

mφs (m) + αI
]
p =

−ℜ
{
JH
mWT

d Wd

[
f(m)− dobs

]}
−λ∇mφs (m) ,

(3)

here p is the search direction vector, and Jm ∈
CNd×Nm is the Jacobian matrix, consisting of partial
derivatives of the data with respect to model parame-
tersm. Nd andNm are the number of data and model
parameters, respectively. The sought after model up-
date vector δm is found by a line search along the
direction p. The vector σ is obtained from m by a
set of parameter transformations.

To improve the condition number of the sys-
tem the matrix on the left of the eq. 3, a
small damping term αI is added. In the be-
ginning of the optimization process, α = 0.01 ∗
diag

[
ℜ
{
JH
mWT

d WdJm

}
+ λ∇2

mφs (m)
]
.

For the realistic size VTI 3D inverse problem and in
case m = σ, the Jacobian matrix Jσ can be in the
order of hundreds of TB (see Table 2 for a few ex-
amples). Such matrices are di�cult to store and ma-
nipulate even on modern computer architectures. To

reduce the memory requirements we propose to de-
couple the simulation and the optimization domains
by a set of parameter transformations which are dis-
cussed in the next section. After the transformations
the memory requirements for one Jacobian could be
reduced from hundreds of TB to tens of TB, or even
less depending on the user's choice. This memory re-
quirements can still be large and therefore we propose
a hybrid MPI/OpenMP implementation to split the
problem between compute nodes and cores of a clus-
ter in a scallable manner. After Jacobian is computed
and can be stored in memory, the system of normal
eqs. 3 is solved with the Conjugate-Gradient (CG)
solver. To improve the convergence of the solver, a
new preconditioner is suggested below.

Overcoming bottlenecks

Parameter transformations

In this section we introduce a set of parameter trans-
formations that signi�cantly reduces memory require-
ments needed for computation and storage of the Ja-
cobian matrix. In total we perform three transforma-
tions of parameters:

� from conductivity σ ∈ R2×nx×ny×nz
to un-

bounded parameters χ ∈ R2×nx×ny×nz
, here

nx, ny, nz are number of nodes in simulation
mesh along three orthogonal directions;

� from χ ∈ R2×nx×ny×nz to �at seabed parame-
ters χ̃ ∈ R2×nx×ny×mz

. Note that the number
of the vertical nodes mz < nz, and the size of
parameter vector is reduced, mostly due to the
fact that the water is not anymore part of the
domain;

� from χ̃ ∈ R2×nx×ny×mz
to a coarser inver-

sion parameterization m ∈ R2×no
x×no

y×no
z
. This

transformation is based on node-based basis
functions. Superscript o denotes optimization
mesh.

These transformations are discussed in detail in Mit-
tet & Avdeeva (2023), here we only focus on the
last one, since straightforward implementation of this
transform can lead to large memory requirements and
signi�cant computational time.

To make the explanations simple we resort to a 1D
case for now. As mentioned in Mittet & Avdeeva
(2023), the parameter χ̃(x) can be considered contin-
uous, if on the interval [0, xmax]

χ̃(x) =
∑
n

χ̃nϕn(x), (4)
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where χ̃n and ϕn(x) are node values and sinc ba-
sis funtions centered at nodes xn, respectively. The
sampling interval is the same as in a simulation grid.

Alternative representation of χ̃(x) with a new set of
basis functions ψν and node values mν is

χ̃(x) =
∑
ν

mνψν(x). (5)

In this representation the sampling interval is 2 to
5 times coarser than in the simulation domain. The
coe�cients mν are the unknowns in the optimization
problem.

In the 1D case, to perform the transformations from
χ̃ to m and back, we form three transformation ma-
trices

A
(x)
ln =

∫ xmax

0

ϕn(x)ϕl(x)dx,

B(x)
γn =

∫ xmax

0

ψγ(x)ϕn(x)dx, (6)

C(x)
νγ =

∫ xmax

0

ψν(x)ψγ(x)dx.

For the 3D case, much larger matrices C, B and A
are computed. For example,

CΓΛ = C(x)
νγ C

(y)
αβC

(z)
λκ . (7)

Matrices A, B are formed similarly.

With these matrices the parameter transforms are
given as

Aχ̃ = BTm, (8a)

Cm = Bχ̃. (8b)

The sizes of the transform matrices depend on the
number of elements in the parameter vectors χ̃ and
m and can become large. However, due to the use of
nodal basis functions A,B and C are sparse. Exam-
ples of the memory requirements for these matrices
are shown in Table 1.

In the 1D and 2.5D cases, it is possible to perform
and store their factorizations once, before the ini-
tial inversion iteration, and use direct solvers, such as
MUMPS, to perform the necessary transformations.
In the 3D case, the matrices are large, especially ma-
trix A, and factorization and direct solvers are not
anymore a suitable choice. In the 3D case, a CG
solver with the Jacobi preconditioner is used. Since
both matricesA andC are diagonal-dominant the Ja-
cobi preconditioner gives good convergency, normally
with less than 10 iterations to achieve relative resid-
ual error of 10−5. We employ a CG solver from the
Eigen C++ library (see Guennebaud et al., 2010).

During the inversion we need to compute the Jaco-
bian with respect to the parameters m,

Jm = Jχ̃A
−1BT . (9)

Due to the large size of the matrixA and the fact that
its inverse is not sparse, instead we use the following
approximation

Jm ≈ Jχ̃diag
−1 (A)BT . (10)

Our tests showed that this approximation is su�-
ciently good.

Note that we do not need to compute the whole ma-
trix Jχ̃, but depending on the available memory we
can compute only a small number of rows, that we
transform using equation 10 to form a part of matrix
Jm, and then continue with the next portion of rows.
We will discuss this below in section on the hybrid
MPI and openMP implemetation.

Preconditioning CG solver

After the Jm is computed, the system of normal equa-
tions 3 can be solved with CG solver. We do not com-
pute or store the system matrix of eq. 3, instead the
action of Jm and JH

m on a vector are implemented.
To speed up the computations we keep both matrices
Jm and JH

m in memory.

It is well known that the number of CG iterations
could be greatly reduced by �nding a good precondi-
tioner. Normally in 3D CSEM inversion the diagonal
Jacobi preconditioner is used.

We propose a preconditioner based on a limited-
memory quasi-Newton approximation to the inverse
of the Hessian matrix. At each GN iteration k, we
use the L-BFGS two loop recursion algorithm from
Nocedal & Wright (1999), to construct the precon-
ditioner. In the two loop recursion, we choose the
diagonal matrix H0

k to contain the inverse of the di-
agonal of system matrix on its diagonal. The com-
putation of the diagonal of the system matrix is not
very expensive and is computed anyway, to decide on
the damping factor α (see eq. 3).

To make sure that this preconditioner is successful
we propose a damped version of L-BFGS, in which
vectors sk = mk+1 −mk are modi�ed as follows:

s̃k = θksk + (1− θk)Hkyk, (11)

here the scalar θk is de�ned as

θk =

{
1, if τk ≥ 0.2

0.8/ (1− τk) , otherwise
, (12)
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with τk =
sTk yk

yT
k Hkyk

, yk = gk+1 − gk, gk =
(

∂φ
∂m

)
k

and Hk is L-BFGS approximation to the inverse of
the Hessian matrix.

Similar approach was proposed in Nocedal & Wright
(1999), but there it was formulated for the Hessian
approximation Bk+1, while we are interested in the
update to the inverse of the Hessian Hk+1.

The change to vectors sk ensures positive de�niteness
of our preconditioner Hk+1. Note that θk = 0 gives
Hk+1 = Hk, and θk = 1 gives the Hk+1 matrix ac-
cording to the unmodi�ed L-BFGS method, so the
values of θk between 0 and 1 gives a matrix that in-
terpolates between these two cases. In Figure 1 we
show the comparison of three 2.5D GN inversion runs
in terms of the number of CG iterations per GN it-
eration. From the �gure we see that solving the sys-
tem without a preconditioner is very ine�cient (black
curve). The new preconditioner (red curve) for the
most of the GN iterations performs at least 2 times
better than the Jacobi preconditioner (blue curve).
This approach was also tested on inversion of various
3D datasets and most of the time the number of CG
iterations stays below 300.

Figure 1: E�ect of CG preconditioner on a num-
ber of CG iterations. Number of CG iterations
is plotted for each GN iteration. Here Atlab3
dataset along central pro�le is inverted with
2.5D inversion.

Parallel implementation

To further speed up the computations we parallelize
our solution. For the forward simulations the paral-
lel implementation is straightforward, the responses
from various sources are computed simalteneously on
di�erent cores. The parallel implemetation for Jaco-
bian computation and CG solution to the system of
normal equations is a bit more complicated.

The Jacobian is distributed by rows to various com-
pute nodes. Depending on the available memory only
a small number of rows of Jσ is computed on the

nodes at the same time. Then all three parameter
transformations are performed, which �lls some por-
tion of rows of a distributed matrix Jm. This process
is repeated until the whole matrix Jm is �lled. We use
the PETSc library (Balay et al., 2023) to distribute
and manipulate the matrix Jm. This library uses the
message-passing model for parallel programming and
employs MPI for all interprocessor communication.

The transformations of the Jacobian computed on
each node are also parallelized by the use of openMP.
The �rst two transformations of the Jacobian are
straightforward. For the last one, every node has
to have access to matrix BJ = diag−1(A)BT (see
eq. 10). To reduce the memory requirements and also
to speed up the sparse-dense matrix multiplications
Jχ̃BJ, in the matrix B we set elements Bij to zero
when Bij < ε ∗ max

ij
(Bij). While for the parameter

transformations 8 we use ε = 10−5, for the Jacobian
transformation 10 the coe�cient ε = 10−2. Multiple
synthetic tests demonstrate that there is no quality
degradation when using these values of ε.

We use openMP to speed-up all matrix-vector mul-
tiplications, required at each CG iteration. To solve
the system of eq. 3 we utilize the CG solver provided
within the PETSc library.

GN Inversion Applications

Application to Atlab-3 CSEM data

In this section we apply our inversion scheme to a
dataset acquired at Mohns ridge by the ATLAB con-
sortium. The consortium was formed by NTNU in
2016 with the aim to utilize a wide variety of geo-
physical data, in order to investigate the nature, dy-
namics, diversities and resources at mid-ocean ridges
and oceanic plates. Since 2016 data was collected at
the Mohns and Knipovich ridges, including CSEM,
MT, seismic, chemical and biological data.

Johansen et al. (2019) presented the �rst CSEM in-
version results from the Mohns ridge. They invert
Atlab-1 data (green dots on Figure 2). Mittet &
Avdeeva (2023) improved resolution and expanded
the 2.5D CSEM inversion results, by inverting both
Atlab-1 and Atlab-3 (blue and red dots on Figure 2)
datasets. In this abstract we invert Atlab-3(2) data
acquired in 2022 at the Mohns ridge (red dots). The
data are measured along three pro�les perpendicular
to the Atlab-1 line, which facilitates 3D interpreta-
tion.

4/6



Avdeeva et al., 2023, Resolving bottlenecks of 3D VTI-anisotropic CSEM GN inversion

Figure 2: Locations of Atlab-1 and Atlab-3 datasets.

Each pro�le consists of 80 transmitters and 6 receivers
separated by approximately 100 m and 800 m, re-
spectively. The data at 1.6, 4.8, 8 and 11.2 Hz are
inverted. The water depth in the area is approxi-
mately 2450 m and the bathymetry is relatively �at.
The information on mesh sizes and memory require-
ments for the transformation and Jacobian matrices
are shown in the �rst and third rows of Tables 1 and
2 for 2.5D and 3D inversions, respectively. The min-
imum total memory required for the inversion runs
is 0.8 GB and 1.4 TB for 2.5D and 3D inversions,
respectively.

Figure 3 compares vertical resistivity images obtained
by the 3D and 2.5D inversions along the central
Atlab-3(2) pro�le. The results are very similar and
�t the data to an RMS of 1.1. Both images compare
well with the overlayed seismic cross-section. The
resistive layer obtained by 3D inversion has slightly
more structure and the change in depth to the top of
this layer below the 4th receiver is more obvious.

Conclusions

We propose a new algorithm for 3D VTI-anisotropic
CSEM inversion, based on the Gauss-Newton opti-
mization. To reduce the memory requirements of
the Gauss-Newton method we suggest to decouple
the simulation and optimization domains, using node-
based basis functions. We show that, in the 3D case,
the memory required by the Jacobian can be reduced
from hundreds to tens of TB. To speed up the CG
solution of the GN system of normal equations the
new preconditioner is suggested. This preconditioner
is at least two times more e�cient than the com-
monly used Jacobi preconditioner. With this new
GN scheme a large datasets can be inverted in 3D
with modest computer resources. The algorithm is
succesfully validated on 2.5D and 3D marine CSEM
datasets acquired at Mohns ridge.
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(a) 3D, RMS = 1.12:

(b) 2.5D, RMS = 1.15:

Figure 3: Comparison of 3D (top) and 2.5D (bottom) inversion results. The vertical resistivity images along
central Atlab-3(2) pro�le are shown. The seismic cross-section is plotted on top of the resistivity images
for comparison.

problem size nx × ny × nz nox × noy × noz A (GB) B (GB) C (GB) BJ (GB)

2.5D, Atlab-3(2) 415× 1× 167 157× 1× 43 0.75 0.32 0.77 0.003
3D, small 94× 169× 77 26× 53× 23 5.2 6.5 0.007 0.06

3D, medium, Atlab-3(2) 228× 214× 167 104× 97× 66 40.6 45.7 0.15 0.57
3D, large 622× 514× 101 199× 161× 18 313 233 0.13 1.1

Table 1: Examples of memory requirements of the transformation matrices.

problem size Ns Nr Ntr Nfr nx × ny × nz Jσ (GB) nox × noy × noz Jm (GB)

2.5D, Atlab-3(2) 80 6 480 4 415× 1× 167 3.98 157× 1× 43 0.39
3D, small 57 12 467 3 94× 169× 77 102 26× 53× 23 2.6

3D, medium, Atlab-3(2) 240 18 4320 4 228× 214× 167 8392 104× 97× 66 685
3D, large 700 139 54813 5 622× 514× 101 527483 199× 161× 18 9421

Table 2: Examples of reductions of memory required by the Jacobian matrix. Here we assume that we invert
�elds (Ex,Ey,Hx,Hy) in 3D case and (Ex,Hy) in 2.5D case. Ns, Nr, Ntr, Nfr denote the number of
sources, receivers, active source-receiver pairs and frequencies, respectively.
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